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A new algorithm is presented for computing the topological entropy of a 
unimodal map of the interval. The accuracy of the algorithm is discussed and 
some graphs of the topological entropy which are obtained using the algorithm 
are displayed. 
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I N T R O D U C T I O N  

Iterated maps of the interval, when viewed as dynamical systems, have 
become important models for the chaotic behavior observed in certain 
physical, chemical, and biological systems. The topological entropy of a 
map is one of the indicators of the complexity of the system. Collet et  al. ~3~ 

gave an algorithm for computing the topological entropy of a unimodal 
map. In this paper we present a new algorithm, which appears to give more 
accurate results when actually implemented on a computer. We also discuss 
the accuracy of the new algorithm and present graphs of the topological 
entropy versus the parameter for some one-parameter families of maps. The 
values of the topological entropy used in plotting the graphs are obtained 
using the algorithm. 

1. PRELIMINARIES 

The topological entropy of a map, denoted by h(f) ,  was first defined 
by Adler et  al. (~) Alternate definitions (which are equivalent to the original) 
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were given by Bowen. ~2~ Several theoretical results could also be used to 
give alternate definitions. For example, for a piecewise-monotone mapf the  
topological entropy is the exponential growth rate of the number of 
monotone pieces of the graph of the nth iterate o f f  and also the exponen- 
tial growth rate of the total variation of the nth iterate o f f  (8) However, 
except in very special cases, the entropy cannot be easily computed using 
these definitions and results. Thus, the problem of finding an algorithm to 
compute topological entropy is not immediately solved by the theoretical 
results. 

Both the paper of Collet et al. (3~ and this paper deal with the special 
case of unimodal maps. We say a map fdefined on a closed interval [a, b] 
is unimodal  if f is continuous on [a, b] and there is a number c in the open 
interval (a, b) such that f is strictly increasing on [a, c] and strictly 
decreasing on [c, b]. Of course, everything in the sequel could be easily 
modified to cover the case where f is strictly decreasing on [a, c] and 
strictly increasing on [c, b]. 

Let f be a unimodal map. Let fn denote the nth iterate off,  i.e., fn  is 
the composition o f f  with itself n times. The kneading sequence o f f  is the 
sequence 

/((f)  = K,/s163 ... 
defined by 

i if f i ( e )  > c 
Ki= if f ' ( c )  = c 

if f i ( c )  < c 

The algorithm given in ref. 3 uses a formula for the topological 
entropy off ,  based on the smallest positive root of a certain power series 
whose coefficients are obtained from the kneading sequence. We present 
here a different algorithm which also uses the kneading sequence, but 
appears to give more accurate results with fewer terms of the kneading 
sequence. The algorithm also avoids the numerical problems inherent in 
finding roots of high-degree polynomials. The main idea of our algorithm 
is to use a model family of maps whose entropy is known, and to compare 
the kneading sequence for the given map f (whose entropy we wish to 
compute) with the kneading sequences of the model family. 

For the model family we use the family of unimodal maps known as 
"tent maps" defined for parameters with 0 ~< s ~< 2 on the interval [0, 1 ] by 

{7 f s ( x ) =  sx  if 1/2~<x~<1 

The topological entropy off~ is well known. 
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Proposi t ion  1.1 : 

0 
h(f~) = log s 

if 0~<s~<l 

if 1 ~<s~<2 

This proposition follows, for example, from the formula of 
Mis~urewicz and Szlenk, (8~ which is valid for piecewise monotone maps f o r  
the interval, 

1 
h ( f )  = lim - log V a r f  n 

n ~  zc, ~ 

where Var denotes the total variation. 
To compare kneading sequences, we use the standard ordering given 

as follows. First we order the symbols R, C, and L by L < C < R. Now, if 
A = A 1 A 2 A  3 .. .  and B = B 1 B 2 B  3 .. .  are kneading sequences, we say A < B  
if there is an s such that A t = B i  for i =  1, 2,..., s and either (1) an even 
nnmber  of A i, i ~ s ,  are equal to R and As+l<Bs+ 1, or (2) an odd 
nnmber  of A,, i ~< s, are equal to R and A, + 1 > Bs + 1. 

This gives a total ordering on the set of all kneading sequences. Our  
algorithm is based on the following characteristic of this ordering (see 
Lemma 2 of ref. 3). 

Proposition 1.2. I f f  and g are unimodal maps and K ( f ) ~  K(g), 
then h ( f )  <<, h(g). 

We will use the notation KN(f )  to denote the first N terms of the 
kneading sequence of f If KN(f )  = A 1 A 2""  A N and K N(g) = B1 B2"'" BN, 
we say K N ( f ) < K N ( g  ) if there is an s with t < ~ s < N  such that A i = B i  for 
i = 1,..., s and either (1) or (2) holds. It follows that if KN(f )  < KN(g), then 
K ( f )  < K(g). Thus we obtain the following. 

Proposition 1.3. If K N ( f ) <  KN(g) for some positive integer N, 
then h ( f )  <~ h(g). 

To simplify the notation, if 0 ~< s ~< 2 and N is a positive integer, we let 
KN(S) denote KN(fs), where f ,  is the tent map with slope s defined earlier. 

2. T H E  A L G O R I T H M  

We now describe a theoretical algorithm which suggests itself from the 
above discussion. Suppose a unimodal map f and a positive number e are 
given. We will compute h ( f )  with an error at most ~. 

Stop I. Let M be a positive integer such that 6 = I / M <  e. 
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Step 2. Find the least positive integer N so that the M finite 
sequences KN(1 ), KN(I +6), Ku(1 +26),  KN(1 +36),..., Ku(1 + M 6 ) =  
KN(2) are distinct. 

Step 3. Compute Ku(f). 
Step 4. Let R be the largest integer with KN(1 + R6)< KN(f). 
Step 5. S e t h ( f ) = l o g E l + ( R + l ) 5 ] .  

It follows from Propositions 1.1 and 1.3 that log(l+RS)<~h(f)<<, 
logr l  + (R + 2 )6 ] .  It is easy to show by the mean value theorem that the 
error in estimating h(f) by log[ 1 + (R + 1)5]  is less than 6 < 5. 

3. P R A C T I C A L  I M P L E M E N T A T I O N  OF  T H E  A L G O R I T H M  

The previous section describes an algorithm that will compute the 
topological entropy of a unimodal map to any prescribed accuracy. There 
are some obstacles to implementing this algorithm in the precise form 
described in the previous section. Here we describe a realization of the 
algorithm which seems to work quite well in practice. 

The main criterion to be applied to the program is accuracy. Of 
course, simplicity and speed are also important. The accuracy of the 
program described above will be the given prescribed error e > 0 provided 
that all computations are done without roundoff error. This would be 
untenable. Where will roundoff errors cause difficulties in the algorithm? 
They will occur when the function f and the functions fs are evaluated. The 
accuracy of with which these functions are computed determines the 
accuracy of the- kneading sequences. Thus, while one may need N terms in 
the kneading sequence to determine h(f) to accuracy e, one may only 
obtain some N' < N terms accurately because of the error in computing f 
If a standard compiler is used, the accuracy will likely be limited to double 
precision or roughly 14 digits. With double precision, it was empirically 
found that the number of terms in the kneading sequence that were 
accurate for fs would be about 900 close to s = l and decrease exponen- 
tially to about 50 for s = 2. Fortunately, it also turns out that empirically 
the number of terms needed for a given accuracy e > 0 in determining h(f) 
is larger near s = 1 and decreases exponentially to a small number near 
s = 2 as well. Some graphs are included here to help visualize these facts 
(Figs. 1 and 2). 

There are several aspects of the theoretical algorithm which would 
make it unacceptably slow on a typical desktop computer. One is comput- 
ing all of the kneading sequences KN(S) each time one computes the 
entropy for a function f. One could avoid this difficulty by choosing a given 
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Fig. 1. The number  of correct terms of the kneading sequence versus the parameter s of the 
tent map f ,  using 13-digit precision in computation.  The x axis in the figure is the parameter  
s, the y axis is the number  of terms that can be computed in the kneading sequence before 
there is ambiguity as to what the next term should be. The step size for s in computing this 
graph is 0.001. 
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Fig. 2. The number  of terms in the kneading sequence needed for KN(Si) and KN(Si+I) to 

be distinct versus the parameter  s of the tent map  fs.  The x axis in the figure is the parameter 
s, the y axis is the number  of terms N in the kneading sequence needed so that KN(Si) and 
Ku(si+l) are distinct. The difference between s~ and s~+l is 0.00t. 
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e > 0 and finding the integers N and M from Steps 1 and 2 of the algorithm. 
Then one could compute the M + 1 kneading sequences in Step 2 once for 
all. To compute the topological entropy of any map f with error at most 
e would then only require that one go through Steps 3-5 of the algorithm. 
The difficulty with this would be that one would not be able to let e be 
smaller for greater accuracy in a subsequent application. Also, if e were 
extremely small, the storage of the M +  1 kneading sequences could be a 
problem. 

These problems are avoided by using a method akin to the bisection 
method in numerical analysis. In this algorithm a positive integer N is 
chosen which will generate the accuracy desired. Let sl = 1 and s2 = 2. 

Stop I. Choose a positive integer N. 

Steo 2. Compute  KN(f). 

Step 3. Let s= (sl + s2)/2 and compute Ku(fs ). 
Stop 4. If Ku(f)=Ku(fs  ) or if (s2--sl)/2 is less than the roundoff 

error of the computer, then estimate h(f) by logs. The error in this 
estimate is at most (s2-sl)/2. If K N ( f ) ~ K x ( f s  ) and (Sz-S1)/2 is still 
greater than the roundoff error of the computer, then go to Step 5. 

Step 5. If KN(f) > KN(fs), then log s2 ~ h(f) ~ log s. In this case let 
s 2 be the same and let sl = s  and go to Step 3. If Ku(f)<KN(fs), then 
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Fig. 3. Number of digits accuracy obtained using 25 terms in the kneading sequence versus 
the parameter s for the tent map fs. 
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log Sl <~ h(f)<~ log s. In this case Jet sl be the same and let s~ = s and go to 
Step 3. 

One could modify the algorithm so that the number  of terms in the 
kneading sequence varies according to the accuracy desired, but it is much 
simpler to hold this number  fixed. In order to aid in determining how large 
N must be in order to achieve the desired accuracy, various graphs have 
been prepared (Figs. 3-6). The value s of the tent map is plotted on the 
x axis. The y axis is the number of digits accuracy obtained by the above 
algorithm for the number  N. This is done for N =  25, 50, 100, and 200. 

Note in these graphs that there is little effect in increasing the number  
of terms in the kneading sequence near s = 1. The relationship between s 
and the number  of digits accuracy is roughly linear with the number of 
terms N in the sequence KN(S) determining the "slope" of this line. Two or 
three digits is usually enough accuracy for graphs of the topological 
entropy. One can easily get 6-14 digits accuracy with 50-60 terms in the 
kneading sequence for most of the range of the parameter. When one is 
near h(f) = 0, the number  of terms needed to get even three digits accuracy 
is quite high. From Fig. 2 one would need approximately 450 terms for this 
much accuracy. Fifty terms were used to produce the graphs of the entropy 
in the next section of the paper. 

Fig. 4. 
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Number of digits accuracy obtained using 50 terms in the kneading sequence versus 
the parameter s for the tent map f~. 
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Number  of digits accuracy obtained using 100 terms in the kneading sequence versus 
the parameter s for the tent map f , .  

Fig. 5. 
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Fig. 6. Number  of digits accuracy obtained using 200 terms in the kneading sequence versus 
the parameter s for the tent map f , .  
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4. G R A P H S  OF THE T O P O L O G I C A L  E N T R O P Y  

Let f~(x)=yx(1-x)  be the quadratic family of maps defined on the 
interval [0, 1]. Assume that the parameter /~ is in the interval [0, 4] so 
that f ,  maps into [0, 1 ]. This family of maps is important in theoretical 
population dynamics and is an example of a family of simple maps with 
extremely complicated dynamics. (6) In this section the topological entropy 
of this map is graphed as a function of the parameter g (Fig. 7). It is well 
known that the topological entropy is zero for y in most of the interval 
[0, 4]. The plot is given only in the range [3.5, 4]. This includes all the 
values where the topological entropy is not zero. The plot of the bifurca- 
tion diagram of the quadratic family is also included for the same interval 
of y for comparison (Fig. 8). Note that on those intervals of # where there 
are attracting periodic points for the map f~, the topological entropy is 
constant. This is known for theoretical reasons to be true. That the graphs 
clearly indicate this gives additional confidence in the algorithm. 

The algorithm described in the previous section makes the graph of 
tl:e topological entropy quite easy to plot and only uses approximately 
15 rain of computer time with a Macintosh computer and True BASIC. 

Our final graph (Fig. 9) is the growth number (i.e., the number whose 
logarithm is the topological entropy) versus the parameter a for the family 
of maps fa(x)= (a-  x2)/2 mentioned in Milnor and Thurston. (7) 
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Fig. 7. Graph of the topological entropy versus the parameter # for the quadratic family 
yx(1-x). The xaxis is the parameter /~ of the map f~,(x)=#x(1-x) for y in the range 
[3.5, 4]. The y axis is the topological entropy of the map f,, using logarithms base 2 so that 
the y axis is [0, 1 ]. 
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Fig. 8, Bifurcation diagram for the quadratic family of maps  #x(1 - x) for 3.5 ~< # <~ 4. This 
graph is obtained in the following manner.  Determine a size for the increment A# = 1/2n. Then 
for a fixed O<<.j<~n, let # j = 7 / 2  + j A # .  Let x0 = 1/2. Let xi+: =f~(x i )  for i =  1-50. Then plot 
(/~j, xi) for i = 51-250. Do this for each 0 ~<j ~< n. 
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Fig. 9, Growth number  versus the parameter a for the family ( a - X 2 ) / 2  with 5 ~< a ~< 8. 
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5. CONCLUDING REMARKS 

The algorithm described in this paper is useful for computing the 
topological entropy of unimodal maps on an interval. It is easily program- 
med and is fast and accurate enough to produce faithful graphs of the 
topological entropy of one-parameter families of unimodal maps. With 
double precision accuracy the algorithm works quite well for the typical 
unimodal maps that arise in applications. 
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